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Motivation: enhancers play an important role in the regulation of gene expression during spermatogenesis.

The development of ChIP-Chip and ChIP-Seq sequencing technology has enabled researchers to focus on

the relationship between enhancers and DNA sequences and histone protein modifications. However, the

prediction of enhancers based on the locally conserved DNA sequence and similar histone modification

features is still unknown. Here, the present study proposed a convolutional neural network (CNN) model to

predict enhancers that can regulate gene expression during spermatogenesis. Results: we have obtained a

positive set of enhancers using the P300 locus, verified by experiments, while a negative set was

constructed using the promoter as a non-enhancer locus. The model was trained on all types of specific

cells during spermatogenesis independently, and the transfer learning strategy was used to fine-tune the

model based on which the model can be trained and adapted to other cells quickly. We visualized the

convolution layer of the trained model and aligned the predicted enhancer with the JASPAR database.

The results showed that the model was highly matched with some important transcription factors during

spermatogenesis, signifying the reliability of the model. Finally, we compared the CNN algorithm with the

gkmSVM algorithm (Support Vector Machine). It is well known that CNN has better performance than the

gkmSVM algorithm, especially in the generalization ability. Our work demonstrated their strong learning

ability and the low CPU requirements for the experiment, with a small number of convolution layers and

simple network structure, while avoiding overfitting the training data. At the end of the experiment, we

used the trained model to build an enhancer recognition website for further research and communication.

Introduction

The enhancer is a DNA cis-acting element that enhances the
transcriptional activity of promoters.1 The enhancers consist of
approximately 50–1500 bases and are considered one of the
most critical regulatory elements in gene expression. Spermato-
genesis is a complex process involving multiple stages and

thousands of genes that are difficult to detect, particularly in
mammals. Many studies have shown that testicular germ cell-
specific genes are controlled by the proximal promoter, insulators,
and distal enhancers.2–4 The identification of enhancers may play
a vital role in the investigation of the complex processes of
spermatogenesis. However, the large scale identification of active
enhancers across a variety of human tissues and cell lines is a
difficult task due to expensive experimental approaches and time-
consuming processes. So far, despite great efforts, the ENCODE
and Roadmap projects were only able to carry out histone
modification experiments in several hundred human cell lines,
still far less than forming a comprehensive landscape of enhancers
under different disease states, and subsequently preventing the
deciphering of gene regulatory mechanisms.

Previous studies have reported some machine learning
methods that use gene sequence and histone modification
signatures to identify enhancer regions. Heintzman et al. analyzed
30 Mb sequences of the histone modification regions in human
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HeLa cells and found that the active promoter was marked by
histone H3 (H3K4) trimethylation, while the enhancer was marked
by H3K4 monomethylation rather than trimethylation. Some
studies used histone modification to predict cis-acting factors.5

Won et al. used Hidden Markov Models (HMMs) to predict
enhancers using three primary histone modifications.6 The RFECS
(Random Forest-based Enhancer identification from the Chromatin
States) and SVM are also used to identify enhancers.7,8 RFECS has
improved a limited number of training samples in previous meth-
ods using random forests to determine the best combination of
histone modifications to predict enhancers. Chen et al. used a deep
CNN to predict enhancers via the integration of DNA sequences and
DNase-seq data and discriminate disease-related enhancers.9 Dikla
Cohnet et al. trained deep CNN to identify enhancer sequences in
multiple species. Chen et al. used multiple biological datasets
including simulated sequences, in vivo binding data of single
transcription factors, and genome-wide chromatin maps of active
enhancers in 17 mammalian species.10 Lee et al. developed a
computational framework called kmer-SVM based on the as-known
SVM to predict mammalian enhancers from background
sequences.11 They found that some predictive k-mer features
are enriched in enhancers and have potential biological mean-
ing. Ghandi et al. improved kmer-SVM by adopting another
type of sequence feature called gapped k-mers.12 Their method,
known as gkmSVM, showed robustness in the estimation of
k-mer frequencies and higher performance than kmer-SVM.
However, k-mer features, though unbiased, may lack the ability
to capture high order characteristics of enhancer sequences. So
far, various studies have been performed to apply the most
advanced deep learning methods in bioinformatics problems.
For instance, a recent study proposed the use of Deep Neural
Network (EP-DNN) to predict enhancers using sequences and
four histone modifications.13 It has been reported that PEDLA
trained with 1,114-dimensional heterogeneous features showed
excellent performance in H1 cells.14

According to the previous studies, machine learning could
successfully be applied for the recognition of enhancers in the
whole genome. Because enhancers are highly cellular or tissue-
specific, and many enhancers only work in specific tissues and
cells. Most of the current studies on enhancers are based on
human H1 or CD4+ T cells. Previous studies reported that the
mechanism of gene regulation in spermatogenesis is so complex
and different from that in somatic cells. So far, a few studies have
been performed on the role of enhancers and other regulatory
factors in the process of spermatogenesis.

Recent studies have evaluated the characteristics and properties
of enhancers in cells; however, less studies about the function of
enhancers have been processed in the complex biological process
of spermatogenesis. Therefore, in the present study, we identified
and analyzed the enhancers in specific cell types during sperma-
togenesis using the CNN model. It has been found that deep
learning methods such as deep CNN and generative adversarial
networks have achieved great success in various computer vision
tasks.15–18 We believe that image recognition is similar to
enhancer recognition. We assumed that some of the same
features of different pictures might be located at different

positions in the picture. Inspired from the rotation of the
picture and pixel deletion, we postulate that enhancers can
also have these characteristics. Enhancers have different positions
in sequences, and sequences can be rotated without changing the
characteristics of enhancers. Based on the above findings, we
claimed that the convolution neural network could be used to
identify enhancers in specific cells during spermatogenesis.19,20

The CNN method that is used in the present study requires less
training data and time, and showed higher training accuracy
compared with the traditional machine learning method. More-
over, CNN has a stronger generalization ability for different types
of cells by using a transfer learning strategy in training. We
visualized the convoluted nucleus layer and compared it with
the JASPAR biological database to further explore its biological
significance, which can provide a reference for the regulation
process of spermatogenesis-related enhancers.21

Methods
Data collection and processing

We collected all throughput sequence datasets during mouse
spermatogenesis, which can be divided into three parts: P300
datasets, histone modification datasets, and DNA sequences
(known promoter, enhancer sequences, and random sequences).
The first part of the Anti-P300/CBP antibody ChIP-seq was
collected from Gene Expression Omnibus (GEO), NCBI with
series GSE97703 and the P300 antibody binding site distribution
is shown in Fig. 1.22 The dataset for histone modifications was
collected from GEO, NCBI with series GSE49624.23 The datasets
for enhancers were collected from VISTA Enhancer Browser,24

which is considered as the central resource for experimentally
verified mouse non-coding fragments with gene-enhancing activity.
The promoter sequence was collected from the mouse promoter
database (Eukaryotic Promoter Database), and random sequences
were generated by generating random numbers from the mouse
genome. The GSE49624 datasets consist of four types of histone
modification for three types of cells during the spermatogenesis,
including H3K4me3, H27me3, H3K4me1, and H3K27ac. The
datasets were then divided into positive and negative sets: P300
and experimentally verified enhancers were used as positive
sets, whereas the promoter and random sequences from the
mouse genome were used as the negative sets. It has been
investigated that P300/CBP is a transcriptional coactivator that
works by binding to transcription factor activation domains and
histone acetyltransferase (HAT) positions that show a specific
nucleosome pattern. Recent studies have shown localized P300
in many active target gene promoter regions and enhancers.25,26

Histones are a type of necessary protein among which lysine
and arginine show high abundance. Histone modifications and
their dynamic changes play an important role in chromatin
modification and gametophyte maturation in normal meiosis.27

In the process of spermatogenesis, the methylation of H3K4,
H3K9 or H3K27 results in temporary expression under strict
regulation to ensure the correct operation of spermatogenesis.
The methylation and acetylation at specific positions affect the
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expression of cis-acting elements in the sequence such as
promoters and enhancers. Therefore, some studies revealed
that these histone features could be vital for predicting the
potential enhancers in the genome. For example, it was found
that enhancers are marked by H3K4 monomethylation but not
trimethylation.5 The genome-wide ChIP-seq histone information
used in this study is shown in Table 1.

The P300 and histone ChIP-seq data were processed.
Initially, the ChIP-seq reads were filtered for quality and 30

trimmed for adapter sequences using FastQC.28 Reads were
aligned to mouse assembly mm10 using bowtie229 with default
parameters. We used MACS30 to identify peaks from ChIP-Seq
data with default parameters. Ultimately, we picked a 1 kb
window around each P300 bound locus and histone marks to
construct the training data. Bases of 1000 bp length upstream and
downstream of the peak point serve as an enhancer sequence.
Most of the current optimized sequence length selections are 1 kb
because it is sufficient to contain the information of the enhancer
(50–200 bp) and incurs minor errors.7 So for each sample site,
we used a sequence of 499 bp upstream and 500 bp downstream
and considered the four histone modifications on this 1 kb
sequence.

The principle and arithmetic of convolutional neural networks

The CNN is composed of many parts, such as the input layer,
convolution layer, pooling layer, inception module, and full
connection layer. The input layer refers to the layer in which the
CNN receives the data. The function of the convolution layer is
to extract the features of each layer, which has a convolution
nucleus, similar to neurons. After feature extraction in the
convolution layer, the output feature map was transferred to
the pooling layer for feature selection and information filtering.
Batch normalization (Batchnorm) can be used to reduce the
amount by what the hidden unit values shift around (covariance
shift). The batch normalization of networks can increase the
training rates and reduces overfitting. For a mini-batch (Mini-
batch gradient descent is a trade-off between stochastic gradient
descent and batch gradient descent) B = {x1,. . .,xm}, we need to
learn parameters g and b, and obtain output yi.

x̂ ¼ xi � mBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sB2 þ e

p (1)

yi  gx̂i þ b � BNg;b xið Þ (2)

where mB is mini-batch mean and sB is variance. In the equation
y = BNg,b(x), the parameters g and b can be learned from the
dataset. The BN (Batch Normalizing Transform) is the trans-
formation process in the algorithm. Activation functions are
usually used to ensure the nonlinearity of each layer of the
whole model, such as the Rectified Linear Unit function
(ReLU).31 The ReLU ensures that the feature mapping is always
positive. After ReLU, the model can extract relevant features
and fit training data better.

ReLU = max(0, x) (3)

Because the convolution layer acts on one window each time,
the model is sensitive to the positions of the P300 binding sites.
The sensitivity can be further improved after the pooling layer
significantly. The Max-pooling function takes the maximum
value of all neurons in the regions. We then used an across-

Table 1 The descriptions of datasets used for training and testing, including
data types, GEO sample IDs, sequencing techniques and cell types. SC,
AGSC and ST represent spermatocytes, spermatogonia and spermatids
respectively

Title Sample ID Technique Cell Ref.

P300 GSM2575692 Illumina HiSeq 2000 22
H3K4me3 GSM1202705 Illumina HiSeq 2000 AGSC 23
H3K4me3 GSM1202706 Illumina HiSeq 2000 SC 23
H3K4me3 GSM1202707 Illumina HiSeq 2000 ST 23
H27me3 GSM1202708 Illumina HiSeq 2000 AGSC 23
H27me3 GSM1202709 Illumina HiSeq 2000 SC 23
H27me3 GSM1202710 Illumina HiSeq 2000 ST 23
H3K4me1 GSM1202711 Illumina HiSeq 2000 SC 23
H3K4me1 GSM1202712 Illumina HiSeq 2000 ST 23
H3K27ac GSM1202713 Illumina HiSeq 2000 AGSC 23
H3K27ac GSM1202714 Illumina HiSeq 2000 SC 23
H3K27ac GSM1202715 Illumina HiSeq 2000 ST 23

Fig. 1 The distribution of the P300 binding site in the genome. The P300 binding site mainly located in the distal intergenic region.
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entropy loss function as the objective function for a classification
network, which can be described as follows.

Hðp; qÞ ¼ �
X

x

pðxÞ log qðxÞ (4)

where H(p,q) is the cross-entropy function, p is the target dis-
tribution and q is the approximation of the target distribution.

The Softmax function is mostly used in the final layer of
a neural network-based classifier that gives the estimated
class probabilities.32 We used MXNet, which is a flexible and
efficient software framework for deep learning, to build a
neural network.33 It is scalable and can be efficient for fast
model training. In this study, the python program was used to
build neural networks. The Gluon interface provided by MXNet
can be used to write programs conveniently and effectively. The
model was developed by using the sequential class of gluon
interfaces to achieve the functions of Auto Grad, Conv2D, and
MaxPool 2D.

yi ¼
eZi

P
j

eZj
(5)

where Zi is the input number of last layers in a neuron, and it’s
divided by the sum of all neuron results in the last layer to
ensure that the final result is within 0–1, which can also be
used as a probability of final prediction. j A {0, 1} is the label for
the i-th category and yi is the prediction confidence for the i-th
category.

Transfer learning

Considering the high cost of obtaining training data, it is very
important to reduce the need for effective training data. In this
case, the method of transfer learning is more convenient and
helpful. Due to the similar cell types between sperm cells
and spermatocytes, transfer learning may improve the model
efficiency, which does not need to initialize model parameters
once again. So we trained the model based on the dataset
of one type of cells to other types of cells with parameters
fine-tuning automatically. This kind of transfer learning can
reduce the training time of the model and can also get
acceptable results.

Visualization of the convolution kernel

Considering the difficulty of understanding the features used in
dense layers of a CNN, we sought all the possible input matrices
that have positive activation values through the first convolu-
tional layer, and then aggregated them into a positive weight
matrix (PWM) which is used to represent a motif. We found all
possible one-hot encoded input matrices in a shape with
positive convolutional activations, which were represented as
visual motifs. We took out the parameters of the first layer
convolution kernel of a convolution neural network, with each
convolution kernel in the shape of 8� 1� 8. Then, we extracted
the parameters for which the shape is 4 � 1 � 8 for identifying
the DNA sequence, retaining the positive value, and setting the
negative value to 0.

Performance evaluation

Performance of binary classification was evaluated based on
standard measures, including sensitivity (also known as recall),
specificity and precision,

Sensitivity ¼ TP

TPþ FN
(6)

Specificity ¼ TN

TNþ FP
(7)

Precision ¼ TP

TPþ FP
(8)

Recall ¼ TP

TPþ FN
(9)

where TP is the number of residues correctly labelled as
positives (true positives); TN is the number of residues correctly
labelled as negatives (true negatives); FP is the number of
misclassified negative cases (false positives), and FN is the
number of misclassified positive cases (false negatives).

To evaluate the prediction performance, ROC analysis was
carried out in the following analysis, which was generated from
the pairs (1-specificity, sensitivity). The area under the curve
(AUC) was calculated with the pROC package in the R program.

Comparison with the gkmSVM algorithm

The datasets were run on the same computer (Intels Core(TM)
i7-3770 CPU@3.40 GHz and 16 GB memory) with low CPU
requirements. The personal computer was used for enhancer
prediction, visualization of CNN, transfer learning, and the
calculations of sensitivity (also known as recall), specificity
and precision.

Data set construction and processing

In the present study, the construction of the data set was divided
into two parts, namely the selection of feature attributes and
division of data sets (positive and negative sets). To process the
trained data samples into inputs that can be recognized by CNN,
we need to specialize in the data. For each trained sequence, we
scanned 1 window around each P300 binding locus, then we
combined the 1 kb base sequence with the histone modification
information to form a matrix of 8 � 1 � 1000 (8 is the channel,
including A, T, C, G and four types of histones, whereas
1 � 1000 is the length of 1 kb sequence). The P300 locus regions
were aligned with the histone modification regions (Fig. 2A). If a
region is modified by histones, the characteristic value of the
position is denoted by 1, whereas the 0 value means the region
is not modified by histones. This process can also be called
one-hot coding. We encoded four nucleic acid bases to form a
matrix as the input to the CNN. The format of the input data is
shown in Fig. 2.

The datasets were constructed for spermatids, spermatocytes
and spermatogonia respectively. Each dataset includes a positive
set, consisting of P300 and known enhancers, and a negative set,
consisting of promoter sequences or random sequences from the
whole mouse genome. Considering the number of non-enhancers
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is far more than that of known enhancers from the whole genome
perspective, we set different ratios of positive and negative sets as
1 : 1, 1 : 4 and 1 : 9 respectively to test the stability of our models.

Build the convolutional neural networks

The deep CNN model is illustrated in Fig. 2B. Our CNN
contains seven learned layers, two inception modules, three

convolutional and two fully-connected. The input layer is an
8 � 1 � 1000 matrix, which is encoded by the one-hot method and
represents the character of 1000 bp sequence. The convolutional
layers contain different kernels with the same sliding step size 1.
Behind each convolutional layer, there are the batch norm, activate
and max-pooling layers. At the end of the neural network, there are
two fully connected layers of size 512 and 256, respectively. Finally,
the probability of the result was generated by the two Softmax layers.

There are two inception modules behind the first con-
volutional layer. The main idea of the inception module is to
cover the optimal local sparse structure of the CNN by easily
available dense components.34 According to the characteristics
of the input data, the filter sizes of the inception module are
designed as the forms of 1 � 1, 1 � 3, and 1 � 5. After an
inception network, max-pooling layers with stride 3 are used to
reduce the resolution of the grid.

Results
Prediction of enhancers using convolutional neural networks

We selected the model in terms of accuracy using 5-fold cross-
validation in both the training set and validation set. The
training error rate curve is illustrated in Fig. 3A. According to
the curve, we used the strategy of the early stop. Before the 37th
epochs (dotted red line) the Adam algorithm is used and the
learning rate is 0.0001.31,35 After 37 epochs, the random gradient
descent (SGD) algorithm is used, and the learning rate is 0.00005.36

By changing the algorithm and learning rate of CNN, the conver-
gence effect of the CNN is better, such as faster convergence.

The training and test set increase the high accuracy rate,
which is more in line with the actual production situation.37,38

In the spermatids datasets, the training and testing ratio was
1 : 9, whereas the average accuracy of the 5-fold cross-validation
on the training set was 94.70%, and the average accuracy on the
testing set was 94.10% (Fig. 3B). In the spermatocytes and
spermatogonia datasets, we used the transfer learning strategy.
Fine-tuning with existing parameters, the curve converges faster,
and only needs eight epochs (Fig. 3C) (Table 2). Through fine-tuning
the parameters, we got better models to fit other cells quickly. In the
original sperm cell training set, the training convergence took 19.2

Fig. 2 Data preprocessing and CNN structure model. (A) The combination
of the peak value of P300 and histone (H3K4me3, H27me3, H3K4me1, and
H3K27ac) modification. The matching results are processed into the corres-
ponding matrices, which are used as inputs of the neural network. Four
colors indicate the four histone modification sites. (B) The structure of the
convolution neural network model. First, the nucleotide sequences A, T, G,
C, and four histone modifications were encoded by one-hot. Then it passes
through a convolution kernel layer, followed by the Batch norm layer,
activation function, and max-pooling layer. Then there are two networks in
the network structures to extract local features. Then it passes from several
convolution network layers, and finally connects to two fully connected
layers, and the softmax function is used to output the final result.

Fig. 3 (A) The relationship between training time and error rate. The vertical axis represents the change of the error rate on the training set and the test
set, whereas the horizontal axis represents the number of training epochs. (B) The 5-fold cross-validation ROC curve of the CNN model on the test set.
(C) The fine-tuning of the training accuracy curve of CNN in spermatogonia.
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hours, but it took only 4.3 hours in the spermatocytes after using the
transfer learning strategy, suggesting that the time performance has
been greatly improved. In the spermatogonial dataset, the accuracy
of CNN training was lower compared with the other two cells,
probably due to the lack of H3K4me1 information, potentially
signifying that histone modification information can be helpful
for the recognition of enhancers.

Visualization of the convolution kernel

We built the parameters learned by the networks into a position
weight matrix (PWM) and then visualized them. The PWM or

position frequency matrix (PFM) methods have been applied to
recognize the relationships between transcription factors and
enhancers (Fig. 4).39 Each convolutional layer of a CNN can be
seen as a non-linear combination of many weighted position
matrices. Therefore, the CNN may have better recognition of
enhancers or transcription factors than PWM matrices. The
visualization of motifs allows us to intuitively understand the
sequence of enhancers and the CNN models, and it further
facilitates our comparison with related enhancer or transcription
factor bioinformatics databases.

The JASPAR core dataset contains a well-trained, non-
redundant profile set derived from published and experimentally
defined transcription factor binding sites in eukaryotes.40 Tom-
tom is an algorithm to measure the motif-motif similarity, which
can be used to search a database of motifs with a given query
motif. The Tomtom sorts the topics in the database and produces
an alignment for each significant match.41 So we can use Tomtom
to compare sequence patterns to a database of known patterns (e.g.
JASPAR). Thus, these extracted motifs can be compared to the
JASPAR database using Tomtom (Fig. 5A).

For each cell line, we used the Tomtom tool to compare the
motif of the first convolutional transformation with the vertebrate
motif database (JASPAR) and set the significance threshold
E value to o1. By comparing with the JASPAR databases, many
transcription factors related to the process of spermatogenesis
can be found.42,43 The results demonstrated that many of our

Table 2 The accuracy of each cell model on its own cell training set and
test set

Cell
Positive :
negative ratio

Train
accuracy (%)

Test
accuracy (%)

Spermatids 1 : 9 94.70 94.10
Spermatocyte 95.20 94.30
Spermatogonia 94.40 93.70

Spermatids 1 : 4 91.79 88.61
Spermatocyte 90.70 89.41
Spermatogonia 87.68 87.61

Spermatids 1 : 1 85.05 82.49
Spermatocyte 86.17 82.56
Spermatogonia 85.90 83.47

Fig. 4 The visualization of the first layers in the convolution kernel. The parameters from the convolution neural network are shown as the PWM logo.
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learned motifs have significant similarity to the biologically
known motifs (Fig. 5). For example, one of the convolution
kernel patterns has a higher similarity with the ETV family of
transcription factors (Fig. 5B). The loss of ETV5 and receptor
tyrosine kinase (RET) levels in neonatal mouse testicular germ
cells could decrease the proliferation and cause abnormal
spermatogenesis. Gaurav Tyagi et al. found that the loss of

ETV5 may decrease the RET expression, which may inhibit the
downstream GDNF/RET/GFRA1 signal.44 The loss of ETV5 in
SSCs may lead to the reduction of germ cell numbers during the
early spermatogenesis.

Besides, one of the convolution kernel patterns has a higher
similarity with the HOX family of transcription factors (Fig. 5C).
The HOX gene encodes a class of transcriptional regulators with

Fig. 5 Relationships between the first layer in the convolution kernel and transcription factors. The patterns obtained from our convolution neural
networks are similar to some known transcription factors in JASPAR. (A) Motifs with high similarity to some known transcription factors. (B) Motifs with
high similarity to the ETV family transcription factors. (C) Motifs with high similarity to the HOX family.

Fig. 6 Comparison of CNN and gkmSVM performance. (A) and (D) are the ROC and PR curves of the CNN and gkmSVM algorithms in spermatocytes. (B)
and (E) are the ROC and PR curves of the CNN and gkmSVM algorithms in spermatozoa. (C) and (F) are the ROC and PR curves of the CNN and gkmSVM
algorithms in spermatozoa. Red is the CNN, blue is gkmSVM.
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homologous domains and similar DNA binding preferences. The
HOX gene family is distributed in almost all eukaryotes. J. Chen’s
research reported that the HOXA1 and HOXB1 homeobox
transcription factors directly regulate the expression of the
EPHA2 gene in rhombomere 4.45 Since the discovery of the
HOX gene, it has attracted much attention because of its core
role in regulating the diversity of the anterior and posterior axis
phenotypes and specifying the characteristics of the axial
skeleton in embryonic development. Furthermore, the convolution
kernel patterns also have a high degree of matching with many
transcription factors, such as SOX, NFY, and so many other
transcription factors. These transcription factors play important
roles in the regulation of the related gene expression.

Comparison with the gkmSVM algorithm

Finally, the predicted results of our algorithm were compared
with the gkmSVM algorithm (Fig. 6). The gkmSVM is an SVM
that predicts the functional genomic sequence elements using
a short (6–8 bp) k-mer combination ranging from 500 to
2000 bp.46 The gkmSVM algorithm only uses sequence infor-
mation as the features so for ensuring fairness, our comparison
with the CNN also just used these features. To explore the
generalization ability of the two different algorithms in different
cells, we used H3K27ac signals as enhancer bench datasets,
which have been used as an important marker by many studies
for enhancer identification.47

We used three different cell datasets to train their respective
models and tested them on the corresponding cell test set. To
evaluate the performance of the algorithm, we first draw the
receiver operating characteristic curve (ROC) and calculate the
area under the curve (AUC). Also, we calculate another criterion,
the area under the precise recall curve (PR), which is less likely
to cause inflation due to class imbalance compared with AUC.48

The curves produced by our method climb much faster towards
to top-left corner of the sub-plots, suggesting that our method
can achieve a relatively high true positive rate at a relatively low
false-positive rate (Fig. 6B and C). The precision–recall curves
for individual cell lines also suggested the superiority of our
method (Fig. 6E and F). Based on these results, we assumed
that our deep learning model is more powerful than SVM-based
methods.

To assess the generalization capabilities of machine learning
algorithms, we trained the model in a special cell to test the
performance in other cells (Table 3). The results found that the
accuracy of our model was 8% greater than the gkmSVM
algorithm. Though our method showed obvious superiority on
the whole, the accuracy of SVM is higher than that of CNN in
spermatocytes. The reason needs to be explored in the future.
Our study also observed that the prediction performance in
the same cell was more powerful than prediction across the
different cells.

Establishment of the enhancer recognition website

To show our results and help researchers in the same research
field, we constructed an enhancer recognition website (http://
203.195.175.196/) with the trained enhancer subconvolution

neural network model. The website was built using the Flask
framework, which is a concise and convenient Python Web
framework. At present, the primary function of the website is to
input a sequence of less than 1000 bp length into the input box
of the homepage, which can generate a prediction probability
after model calculation (Fig. 7). It is helpful using the prob-
ability from our model result to judge whether the sequence is
an enhancer or not. The website also includes some information
about the process, data, results and contact information related to
the present experiment. Our website provides a communication
platform for the related research of enhancer recognition based on
machine learning, which may be helpful for the research of
enhancers and cis-acting elements.

Table 3 Comparison of the AUC results for CNN and gkmSVM. Each row
represents the cell type for training, and each column presents the cell
type for the test. For each model, we used 5-fold cross-validation. Values
in bold and italics indicate down and up, respectively

Algorithm Spermatids Spermatocyte Spermatogonia

CNN Spermatids 0.8968 0.9149 0.6273
Spermatocyte 0.8447 0.9561 0.6328
Spermatogonia 0.5274 0.5738 0.8057

SVM Spermatids 0.8873 0.5192 0.543
Spermatocyte 0.8208 0.9504 0.5109
Spermatogonia 0.5847 0.5014 0.7533

Fig. 7 Homepage of the developed website.
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Conclusions and discussion

In this paper, we proposed a deep CNN to solve the enhancer
identification problem in mouse spermatogenesis. We used
P300 data, enhancer data that were experimentally verified, and
four histone training datasets of three sperm cells during
spermatogenesis. We compared the trained model with the
traditional machine learning model gkmSVM. The CNN model
outperformed the SVM algorithm in terms of performance,
especially when it comes to across cell prediction. The CNN
model has better prospects for predicting enhancers in differ-
ent types of cells. During the experiment, the volume of our
visual layer was compared with the bioinformatics database
and its biological significance explored, which proved that the
model could be used to study the mechanism of sperm enhancer,
further providing statistical support. In the model training,
we adopted the transfer learning strategy, and we noted that not
only was the training speed of the CNN faster, but also the
model generalization was stronger compared with other
models. Researchers can use the present strategy based on
the existing CNN model to quickly train a suitable model for
their experiments.

Compared with using CPU only, the GPU can accelerate the
training speed of the model. We can also try the Recurrent
Neural Networks (RNN) algorithm. Generally speaking, the
information sequence is rich in a large number of sequences.
The information has a complex time correlation and overall
logicality, and the information length varies. The traditional
neural network can’t be solved. Thus, RNN formally solves this
sequence problem that arises at this historic moment.

In the future, we can use more enhancers to identify
information, such as CpG Islands, evolutionary conservation,
and sequence features. Also, CNN can map the whole genome
of other types of chromatin elements and further annotate the
whole genome regulatory code. We can further explore the role
of recognition enhancers in spermatogenesis by conducting
experimental studies. Our model provides the possibility to
study the recognition and association for specific base expression
regulated by multiple enhancers.
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